Quantcast
Channel: Easy Guides
Viewing all articles
Browse latest Browse all 183

ggplot2 ECDF plot : Quick start guide for Empirical Cumulative Density Function - R software and data visualization

$
0
0


This R tutorial describes how to create an ECDF plot (or Empirical Cumulative Density Function) using R software and ggplot2 package. ECDF reports for any given number the percent of individuals that are below that threshold.

The function stat_ecdf() can be used.

Create some data

set.seed(1234)
df <- data.frame(height = round(rnorm(200, mean=60, sd=15)))
head(df)
##   height
## 1     42
## 2     64
## 3     76
## 4     25
## 5     66
## 6     68

ECDF plots

library(ggplot2)

ggplot(df, aes(height)) + stat_ecdf(geom = "point")

ggplot(df, aes(height)) + stat_ecdf(geom = "step")

For any value, say, height = 50, you can see that about 25% of our individuals are shorter than 50 inches

Customized ECDF plots

# Basic ECDF plot
ggplot(df, aes(height)) + stat_ecdf(geom = "step")+
labs(title="Empirical Cumulative \n Density Function",
     y = "F(height)", x="Height in inch")+
theme_classic()

Infos

This analysis has been performed using R software (ver. 3.2.4) and ggplot2 (ver. 2.1.0)


Viewing all articles
Browse latest Browse all 183

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>