Quantcast
Channel: Easy Guides
Viewing all articles
Browse latest Browse all 183

Bar Plots and Modern Alternatives

$
0
0


This article describes how to create easily basic and ordered bar plots using ggplot2 based helper functions available in the ggpubr R package. We’ll also present some modern alternatives to bar plots, including lollipop charts and cleveland’s dot plots.

Note that, the approach to build a bar plot, using ggplot2 standard verbs, has been described in our previous article available at: ggplot2 barplots : Quick start guide.

You might be also interested by the following articles:


Bar plots and modern alternatives

Bar plots and modern alternatives

Contents:

Prerequisites

Required R package

You need to install the R package ggpubr (version >= 0.1.3), to easily create ggplot2-based publication ready plots.

Install from CRAN:

install.packages("ggpubr")

Or, install the latest developmental version from GitHub as follow:

if(!require(devtools)) install.packages("devtools")
devtools::install_github("kassambara/ggpubr")

Load ggpubr:

library(ggpubr)

Basic bar plots

Create a demo data set:

df <- data.frame(dose=c("D0.5", "D1", "D2"),
                 len=c(4.2, 10, 29.5))
print(df)
  dose  len
1 D0.5  4.2
2   D1 10.0
3   D2 29.5

Basic bar plots:

# Basic bar plots with label
p <- ggbarplot(df, x = "dose", y = "len",
          color = "black", fill = "lightgray")
p

# Rotate to create horizontal bar plots
p + rotate()
Bar plots and modern alternativesBar plots and modern alternatives

Bar plots and modern alternatives

Change fill and outline colors by groups:

ggbarplot(df, x = "dose", y = "len",
   fill = "dose", color = "dose", palette = "jco")
Bar plots and modern alternatives

Bar plots and modern alternatives

Multiple grouping variables

Create a demo data set:

df2 <- data.frame(supp=rep(c("VC", "OJ"), each=3),
                  dose=rep(c("D0.5", "D1", "D2"),2),
                  len=c(6.8, 15, 33, 4.2, 10, 29.5))
print(df2)
  supp dose  len
1   VC D0.5  6.8
2   VC   D1 15.0
3   VC   D2 33.0
4   OJ D0.5  4.2
5   OJ   D1 10.0
6   OJ   D2 29.5

Plot y = “len” by x = “dose” and change color by a second group: “supp”

# Stacked bar plots, add labels inside bars
ggbarplot(df2, x = "dose", y = "len",
  fill = "supp", color = "supp", 
  palette = c("gray", "black"),
  label = TRUE, lab.col = "white", lab.pos = "in")

# Change position: Interleaved (dodged) bar plot
ggbarplot(df2, x = "dose", y = "len",
          fill = "supp", color = "supp", 
          palette = c("gray", "black"),
          position = position_dodge(0.9))
Bar plots and modern alternativesBar plots and modern alternatives

Bar plots and modern alternatives

Ordered bar plots

Load and prepare data:

# Load data
data("mtcars")
dfm <- mtcars
# Convert the cyl variable to a factor
dfm$cyl <- as.factor(dfm$cyl)
# Add the name colums
dfm$name <- rownames(dfm)
# Inspect the data
head(dfm[, c("name", "wt", "mpg", "cyl")])
                               name    wt  mpg cyl
Mazda RX4                 Mazda RX4 2.620 21.0   6
Mazda RX4 Wag         Mazda RX4 Wag 2.875 21.0   6
Datsun 710               Datsun 710 2.320 22.8   4
Hornet 4 Drive       Hornet 4 Drive 3.215 21.4   6
Hornet Sportabout Hornet Sportabout 3.440 18.7   8
Valiant                     Valiant 3.460 18.1   6

Create ordered bar plots. Change the fill color by the grouping variable “cyl”. Sorting will be done globally, but not by groups.

ggbarplot(dfm, x = "name", y = "mpg",
          fill = "cyl",               # change fill color by cyl
          color = "white",            # Set bar border colors to white
          palette = "jco",            # jco journal color palett. see ?ggpar
          sort.val = "desc",          # Sort the value in dscending order
          sort.by.groups = FALSE,     # Don't sort inside each group
          x.text.angle = 90           # Rotate vertically x axis texts
          )
Bar plots and modern alternatives

Bar plots and modern alternatives

Sort bars inside each group. Use the argument sort.by.groups = TRUE.

ggbarplot(dfm, x = "name", y = "mpg",
          fill = "cyl",               # change fill color by cyl
          color = "white",            # Set bar border colors to white
          palette = "jco",            # jco journal color palett. see ?ggpar
          sort.val = "asc",           # Sort the value in dscending order
          sort.by.groups = TRUE,      # Sort inside each group
          x.text.angle = 90           # Rotate vertically x axis texts
          )
Bar plots and modern alternatives

Bar plots and modern alternatives

Deviation graphs

The deviation graph shows the deviation of quantitative values to a reference value. In the R code below, we’ll plot the mpg z-score from the mtcars data set.

Calculate the z-score of the mpg data:

# Calculate the z-score of the mpg data
dfm$mpg_z <- (dfm$mpg -mean(dfm$mpg))/sd(dfm$mpg)
dfm$mpg_grp <- factor(ifelse(dfm$mpg_z < 0, "low", "high"), 
                     levels = c("low", "high"))
# Inspect the data
head(dfm[, c("name", "wt", "mpg", "mpg_z", "mpg_grp", "cyl")])
                               name    wt  mpg      mpg_z mpg_grp cyl
Mazda RX4                 Mazda RX4 2.620 21.0  0.1508848    high   6
Mazda RX4 Wag         Mazda RX4 Wag 2.875 21.0  0.1508848    high   6
Datsun 710               Datsun 710 2.320 22.8  0.4495434    high   4
Hornet 4 Drive       Hornet 4 Drive 3.215 21.4  0.2172534    high   6
Hornet Sportabout Hornet Sportabout 3.440 18.7 -0.2307345     low   8
Valiant                     Valiant 3.460 18.1 -0.3302874     low   6

Create an ordered bar plot, colored according to the level of mpg:

ggbarplot(dfm, x = "name", y = "mpg_z",
          fill = "mpg_grp",           # change fill color by mpg_level
          color = "white",            # Set bar border colors to white
          palette = "jco",            # jco journal color palett. see ?ggpar
          sort.val = "asc",           # Sort the value in ascending order
          sort.by.groups = FALSE,     # Don't sort inside each group
          x.text.angle = 90,          # Rotate vertically x axis texts
          ylab = "MPG z-score",
          xlab = FALSE,
          legend.title = "MPG Group"
          )
Bar plots and modern alternatives

Bar plots and modern alternatives

Rotate the plot: use rotate = TRUE and sort.val = “desc”

ggbarplot(dfm, x = "name", y = "mpg_z",
          fill = "mpg_grp",           # change fill color by mpg_level
          color = "white",            # Set bar border colors to white
          palette = "jco",            # jco journal color palett. see ?ggpar
          sort.val = "desc",          # Sort the value in descending order
          sort.by.groups = FALSE,     # Don't sort inside each group
          x.text.angle = 90,          # Rotate vertically x axis texts
          ylab = "MPG z-score",
          legend.title = "MPG Group",
          rotate = TRUE,
          ggtheme = theme_minimal()
          )
Bar plots and modern alternatives

Bar plots and modern alternatives

Alternatives to bar plots

Lollipop chart

Lollipop chart is an alternative to bar plots, when you have a large set of values to visualize.

Lollipop chart colored by the grouping variable “cyl”:

ggdotchart(dfm, x = "name", y = "mpg",
           color = "cyl",                                # Color by groups
           palette = c("#00AFBB", "#E7B800", "#FC4E07"), # Custom color palette
           sorting = "ascending",                        # Sort value in descending order
           add = "segments",                             # Add segments from y = 0 to dots
           ggtheme = theme_pubr()                        # ggplot2 theme
           )
Bar plots and modern alternatives

Bar plots and modern alternatives

  • Sort in descending order. sorting = “descending”.
  • Rotate the plot vertically, using rotate = TRUE.
  • Sort the mpg value inside each group by using group = “cyl”.
  • Set dot.size to 6.
  • Add mpg values as label. label = “mpg” or label = round(dfm$mpg).
ggdotchart(dfm, x = "name", y = "mpg",
           color = "cyl",                                # Color by groups
           palette = c("#00AFBB", "#E7B800", "#FC4E07"), # Custom color palette
           sorting = "descending",                       # Sort value in descending order
           add = "segments",                             # Add segments from y = 0 to dots
           rotate = TRUE,                                # Rotate vertically
           group = "cyl",                                # Order by groups
           dot.size = 6,                                 # Large dot size
           label = round(dfm$mpg),                        # Add mpg values as dot labels
           font.label = list(color = "white", size = 9, 
                             vjust = 0.5),               # Adjust label parameters
           ggtheme = theme_pubr()                        # ggplot2 theme
           )
Bar plots and modern alternatives

Bar plots and modern alternatives

Deviation graph:

  • Use y = “mpg_z”
  • Change segment color and size: add.params = list(color = “lightgray”, size = 2)
ggdotchart(dfm, x = "name", y = "mpg_z",
           color = "cyl",                                # Color by groups
           palette = c("#00AFBB", "#E7B800", "#FC4E07"), # Custom color palette
           sorting = "descending",                       # Sort value in descending order
           add = "segments",                             # Add segments from y = 0 to dots
           add.params = list(color = "lightgray", size = 2), # Change segment color and size
           group = "cyl",                                # Order by groups
           dot.size = 6,                                 # Large dot size
           label = round(dfm$mpg_z,1),                        # Add mpg values as dot labels
           font.label = list(color = "white", size = 9, 
                             vjust = 0.5),               # Adjust label parameters
           ggtheme = theme_pubr()                        # ggplot2 theme
           )+
  geom_hline(yintercept = 0, linetype = 2, color = "lightgray")
Bar plots and modern alternatives

Bar plots and modern alternatives

Cleveland’s dot plot

Color y text by groups. Use y.text.col = TRUE.

ggdotchart(dfm, x = "name", y = "mpg",
           color = "cyl",                                # Color by groups
           palette = c("#00AFBB", "#E7B800", "#FC4E07"), # Custom color palette
           sorting = "descending",                       # Sort value in descending order
           rotate = TRUE,                                # Rotate vertically
           dot.size = 2,                                 # Large dot size
           y.text.col = TRUE,                            # Color y text by groups
           ggtheme = theme_pubr()                        # ggplot2 theme
           )+
  theme_cleveland()                                      # Add dashed grids
Bar plots and modern alternatives

Bar plots and modern alternatives

Infos

This analysis has been performed using R software (ver. 3.3.2) and ggpubr (ver. 0.1.4).


Viewing all articles
Browse latest Browse all 183

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>