Quantcast
Channel: Easy Guides
Viewing all articles
Browse latest Browse all 183

ggplot2 - Easy way to mix multiple graphs on the same page - R software and data visualization

$
0
0


To arrange multiple ggplot2 graphs on the same page, the standard R functions - par() and layout() - cannot be used.

This R tutorial will show you, step by step, how to put several ggplots on a single page.

The functions grid.arrange()[in the package gridExtra] and plot_grid()[in the package cowplot], will be used.

Install and load required packages

Install and load the package gridExtra

install.packages("gridExtra")
library("gridExtra")

Install and load the package cowplot

cowplot can be installed as follow:

install.packages("cowplot")

OR

as follow using devtools package (devtools should be installed before using the code below):

devtools::install_github("wilkelab/cowplot")

Load cowplot:

library("cowplot")

Prepare some data

ToothGrowth data is used :

df <- ToothGrowth
# Convert the variable dose from a numeric to a factor variable
df$dose <- as.factor(df$dose)
head(df)
##    len supp dose
## 1  4.2   VC  0.5
## 2 11.5   VC  0.5
## 3  7.3   VC  0.5
## 4  5.8   VC  0.5
## 5  6.4   VC  0.5
## 6 10.0   VC  0.5

Cowplot: Publication-ready plots

The cowplot package is an extension to ggplot2 and it can be used to provide a publication-ready plots.

Basic plots

library(cowplot)
# Default plot
bp <- ggplot(df, aes(x=dose, y=len, color=dose)) +
  geom_boxplot() + 
  theme(legend.position = "none")
bp

# Add gridlines
bp + background_grid(major = "xy", minor = "none")

ggplot2 arrange multiple graphs on the same page, R software and data visualizationggplot2 arrange multiple graphs on the same page, R software and data visualization

Recall that, the function ggsave()[in ggplot2 package] can be used to save ggplots. However, when working with cowplot, the function save_plot() [in cowplot package] is preferred. It’s an alternative to ggsave with a better support for multi-figur plots.

save_plot("mpg.pdf", plot.mpg,
          base_aspect_ratio = 1.3 # make room for figure legend
          )

Arranging multiple graphs using cowplot

# Scatter plot
sp <- ggplot(mpg, aes(x = cty, y = hwy, colour = factor(cyl)))+ 
  geom_point(size=2.5)
sp

# Bar plot
bp <- ggplot(diamonds, aes(clarity, fill = cut)) +
  geom_bar() +
  theme(axis.text.x = element_text(angle=70, vjust=0.5))
bp

ggplot2 arrange multiple graphs on the same page, R software and data visualizationggplot2 arrange multiple graphs on the same page, R software and data visualization

Combine the two plots (the scatter plot and the bar plot):

plot_grid(sp, bp, labels=c("A", "B"), ncol = 2, nrow = 1)

ggplot2 arrange multiple graphs on the same page, R software and data visualization

The function draw_plot() can be used to place graphs at particular locations with a particular sizes. The format of the function is:

draw_plot(plot, x = 0, y = 0, width = 1, height = 1)
  • plot: the plot to place (ggplot2 or a gtable)
  • x: The x location of the lower left corner of the plot.
  • y: The y location of the lower left corner of the plot.
  • width, height: the width and the height of the plot

The function ggdraw() is used to initialize an empty drawing canvas.

plot.iris <- ggplot(iris, aes(Sepal.Length, Sepal.Width)) + 
  geom_point() + facet_grid(. ~ Species) + stat_smooth(method = "lm") +
  background_grid(major = 'y', minor = "none") + # add thin horizontal lines 
  panel_border() # and a border around each panel
# plot.mpt and plot.diamonds were defined earlier
ggdraw() +
  draw_plot(plot.iris, 0, .5, 1, .5) +
  draw_plot(sp, 0, 0, .5, .5) +
  draw_plot(bp, .5, 0, .5, .5) +
  draw_plot_label(c("A", "B", "C"), c(0, 0, 0.5), c(1, 0.5, 0.5), size = 15)

ggplot2 arrange multiple graphs on the same page, R software and data visualization

grid.arrange: Create and arrange multiple plots

The R code below creates a box plot, a dot plot, a violin plot and a stripchart (jitter plot) :

library(ggplot2)
# Create a box plot
bp <- ggplot(df, aes(x=dose, y=len, color=dose)) +
  geom_boxplot() + 
  theme(legend.position = "none")

# Create a dot plot
# Add the mean point and the standard deviation
dp <- ggplot(df, aes(x=dose, y=len, fill=dose)) +
  geom_dotplot(binaxis='y', stackdir='center')+
  stat_summary(fun.data=mean_sdl, mult=1, 
                 geom="pointrange", color="red")+
   theme(legend.position = "none")

# Create a violin plot
vp <- ggplot(df, aes(x=dose, y=len)) +
  geom_violin()+
  geom_boxplot(width=0.1)

# Create a stripchart
sc <- ggplot(df, aes(x=dose, y=len, color=dose, shape=dose)) +
  geom_jitter(position=position_jitter(0.2))+
  theme(legend.position = "none") +
  theme_gray()

Combine the plots using the function grid.arrange() [in gridExtra] :

library(gridExtra)
grid.arrange(bp, dp, vp, sc, ncol=2, 
             main="Multiple plots on the same page")

ggplot2 arrange multiple graphs on the same page, R software and data visualization

Add a common legend for multiple ggplot2 graphs

This can be done in four simple steps :

  1. Create the plots : p1, p2, ….
  2. Save the legend of the plot p1 as an external graphical element (called a “grob” in Grid terminology)
  3. Remove the legends from all plots
  4. Draw all the plots with only one legend in the right panel

To save the legend of a ggplot, the helper function below can be used :

library(gridExtra)
get_legend<-function(myggplot){
  tmp <- ggplot_gtable(ggplot_build(myggplot))
  leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box")
  legend <- tmp$grobs[[leg]]
  return(legend)
}

(The function above is derived from this forum. )

# 1. Create the plots
#++++++++++++++++++++++++++++++++++
# Create a box plot
bp <- ggplot(df, aes(x=dose, y=len, color=dose)) +
  geom_boxplot()

# Create a violin plot
vp <- ggplot(df, aes(x=dose, y=len, color=dose)) +
  geom_violin()+
  geom_boxplot(width=0.1)+
  theme(legend.position="none")

# 2. Save the legend
#+++++++++++++++++++++++
legend <- get_legend(bp)

# 3. Remove the legend from the box plot
#+++++++++++++++++++++++
bp <- bp + theme(legend.position="none")

# 4. Arrange ggplot2 graphs with a specific width
grid.arrange(bp, vp, legend, ncol=3, widths=c(2.3, 2.3, 0.8))

ggplot2 arrange multiple graphs on the same page, R software and data visualization

Scatter plot with marginal density plots

Step 1/3. Create some data :

set.seed(1234)
x <- c(rnorm(500, mean = -1), rnorm(500, mean = 1.5))
y <- c(rnorm(500, mean = 1), rnorm(500, mean = 1.7))
group <- as.factor(rep(c(1,2), each=500))
df2 <- data.frame(x, y, group)
head(df2)
##             x          y group
## 1 -2.20706575 -0.2053334     1
## 2 -0.72257076  1.3014667     1
## 3  0.08444118 -0.5391452     1
## 4 -3.34569770  1.6353707     1
## 5 -0.57087531  1.7029518     1
## 6 -0.49394411 -0.9058829     1

Step 2/3. Create the plots :

# Scatter plot of x and y variables and color by groups
scatterPlot <- ggplot(df2,aes(x, y, color=group)) + 
  geom_point() + 
  scale_color_manual(values = c('#999999','#E69F00')) + 
  theme(legend.position=c(0,1), legend.justification=c(0,1))


# Marginal density plot of x (top panel)
xdensity <- ggplot(df2, aes(x, fill=group)) + 
  geom_density(alpha=.5) + 
  scale_fill_manual(values = c('#999999','#E69F00')) + 
  theme(legend.position = "none")

# Marginal density plot of y (right panel)
ydensity <- ggplot(df2, aes(y, fill=group)) + 
  geom_density(alpha=.5) + 
  scale_fill_manual(values = c('#999999','#E69F00')) + 
  theme(legend.position = "none")

Create a blank placeholder plot :

blankPlot <- ggplot()+geom_blank(aes(1,1))+
  theme(
    plot.background = element_blank(), 
   panel.grid.major = element_blank(),
   panel.grid.minor = element_blank(), 
   panel.border = element_blank(),
   panel.background = element_blank(),
   axis.title.x = element_blank(),
   axis.title.y = element_blank(),
   axis.text.x = element_blank(), 
   axis.text.y = element_blank(),
   axis.ticks = element_blank(),
   axis.line = element_blank()
     )

Step 3/3. Put the plots together:

Arrange ggplot2 with adapted height and width for each row and column :

library("gridExtra")
grid.arrange(xdensity, blankPlot, scatterPlot, ydensity, 
        ncol=2, nrow=2, widths=c(4, 1.4), heights=c(1.4, 4))

ggplot2 arrange multiple graphs on the same page, R software and data visualization

Create a complex layout using the function viewport()

The different steps are :

  1. Create plots : p1, p2, p3, ….
  2. Move to a new page on a grid device using the function grid.newpage()
  3. Create a layout 2X2 - number of columns = 2; number of rows = 2
  4. Define a grid viewport : a rectangular region on a graphics device
  5. Print a plot into the viewport
# Move to a new page
grid.newpage()

# Create layout : nrow = 2, ncol = 2
pushViewport(viewport(layout = grid.layout(2, 2)))

# A helper function to define a region on the layout
define_region <- function(row, col){
  viewport(layout.pos.row = row, layout.pos.col = col)
} 

# Arrange the plots
print(scatterPlot, vp=define_region(1, 1:2))
print(xdensity, vp = define_region(2, 1))
print(ydensity, vp = define_region(2, 2))

ggplot2 arrange multiple graphs on the same page, R software and data visualization

Insert an external graphical element inside a ggplot

The function annotation_custom() [in ggplot2] can be used for adding tables, plots or other grid-based elements. The simplified format is :

annotation_custom(grob, xmin, xmax, ymin, ymax)

  • grob: the external graphical element to display
  • xmin, xmax : x location in data coordinates (horizontal location)
  • ymin, ymax : y location in data coordinates (vertical location)


The different steps are :

  1. Create a scatter plot of y = f(x)
  2. Add, for example, the box plot of the variables x and y inside the scatter plot using the function annotation_custom()

As the inset box plot overlaps with some points, a transparent background is used for the box plots.

# Create a transparent theme object
transparent_theme <- theme(
 axis.title.x = element_blank(),
 axis.title.y = element_blank(),
 axis.text.x = element_blank(), 
 axis.text.y = element_blank(),
 axis.ticks = element_blank(),
 panel.grid = element_blank(),
 axis.line = element_blank(),
 panel.background = element_rect(fill = "transparent",colour = NA),
 plot.background = element_rect(fill = "transparent",colour = NA))

Create the graphs :

p1 <- scatterPlot # see previous sections for the scatterPlot

# Box plot of the x variable
p2 <- ggplot(df2, aes(factor(1), x))+
  geom_boxplot(width=0.3)+coord_flip()+
  transparent_theme

# Box plot of the y variable
p3 <- ggplot(df2, aes(factor(1), y))+
  geom_boxplot(width=0.3)+
  transparent_theme

# Create the external graphical elements
# called a "grop" in Grid terminology
p2_grob = ggplotGrob(p2)
p3_grob = ggplotGrob(p3)

# Insert p2_grob inside the scatter plot
xmin <- min(x); xmax <- max(x)
ymin <- min(y); ymax <- max(y)
p1 + annotation_custom(grob = p2_grob, xmin = xmin, xmax = xmax, 
                       ymin = ymin-1.5, ymax = ymin+1.5)

ggplot2 arrange multiple graphs on the same page, R software and data visualization

# Insert p3_grob inside the scatter plot
p1 + annotation_custom(grob = p3_grob,
                       xmin = xmin-1.5, xmax = xmin+1.5, 
                       ymin = ymin, ymax = ymax)

ggplot2 arrange multiple graphs on the same page, R software and data visualization

If you have a solution to insert, at the same time, both p2_grob and p3_grob inside the scatter plot, please let me a comment. I got some errors trying to do this…

Mix table, text and ggplot2 graphs

The functions below are required :

  • tableGrob() [in the package gridExtra] : for adding a data table to a graphic device
  • splitTextGrob() [in the package RGraphics] : for adding a text to a graph

Make sure that the package RGraphics is installed.

library(RGraphics)
library(gridExtra)

# Table
p1 <- tableGrob(head(ToothGrowth))

# Text
text <- "ToothGrowth data describes the effect of Vitamin C on tooth growth in Guinea pigs.  Three dose levels of Vitamin C (0.5, 1, and 2 mg) with each of two delivery methods [orange juice (OJ) or ascorbic acid (VC)] are used."
p2 <- splitTextGrob(text)

# Box plot
p3 <- ggplot(df, aes(x=dose, y=len)) + geom_boxplot()

# Arrange the plots on the same page
grid.arrange(p1, p2, p3, ncol=1)

ggplot2 arrange multiple graphs on the same page, R software and data visualization

Infos

This analysis has been performed using R software (ver. 3.1.2) and ggplot2 (ver. 1.0.0)


Viewing all articles
Browse latest Browse all 183

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>