Quantcast
Channel: Easy Guides
Viewing all articles
Browse latest Browse all 183

ggcorrplot: Visualization of a correlation matrix using ggplot2

$
0
0


The easiest way to visualize a correlation matrix in R is to use the package corrplot.

In our previous article we also provided a quick-start guide for visualizing a correlation matrix using ggplot2.

Another solution is to use the function ggcorr() in ggally package. However, the ggally package doesn’t provide any option for reordering the correlation matrix or for displaying the significance level.

In this article, we’ll describe the R package ggcorrplot for displaying easily a correlation matrix using ‘ggplot2’.

ggcorrplot main features

It provides a solution for reordering the correlation matrix and displays the significance level on the correlogram. It includes also a function for computing a matrix of correlation p-values. It’s inspired from the package corrplot.

Installation and loading

ggcorrplot can be installed from CRAN as follow:

install.packages("ggcorrplot")

Or, install the latest version from GitHub:

# Install
if(!require(devtools)) install.packages("devtools")
devtools::install_github("kassambara/ggcorrplot")

Loading:

library(ggcorrplot)

Getting started

Compute a correlation matrix

The mtcars data set will be used in the following R code. The function cor_pmat() [in ggcorrplot] computes a matrix of correlation p-values.

# Compute a correlation matrix
data(mtcars)
corr <- round(cor(mtcars), 1)
head(corr[, 1:6])
##       mpg  cyl disp   hp drat   wt
## mpg   1.0 -0.9 -0.8 -0.8  0.7 -0.9
## cyl  -0.9  1.0  0.9  0.8 -0.7  0.8
## disp -0.8  0.9  1.0  0.8 -0.7  0.9
## hp   -0.8  0.8  0.8  1.0 -0.4  0.7
## drat  0.7 -0.7 -0.7 -0.4  1.0 -0.7
## wt   -0.9  0.8  0.9  0.7 -0.7  1.0
# Compute a matrix of correlation p-values
p.mat <- cor_pmat(mtcars)
head(p.mat[, 1:4])
##               mpg          cyl         disp           hp
## mpg  0.000000e+00 6.112687e-10 9.380327e-10 1.787835e-07
## cyl  6.112687e-10 0.000000e+00 1.803002e-12 3.477861e-09
## disp 9.380327e-10 1.803002e-12 0.000000e+00 7.142679e-08
## hp   1.787835e-07 3.477861e-09 7.142679e-08 0.000000e+00
## drat 1.776240e-05 8.244636e-06 5.282022e-06 9.988772e-03
## wt   1.293959e-10 1.217567e-07 1.222311e-11 4.145827e-05

Correlation matrix visualization

# Visualize the correlation matrix
# --------------------------------
# method = "square" (default)
ggcorrplot(corr)

ggcorrplot R package: Visualization of a correlation matrix using ggplot2

# method = "circle"
ggcorrplot(corr, method = "circle")

ggcorrplot R package: Visualization of a correlation matrix using ggplot2

# Reordering the correlation matrix
# --------------------------------
# using hierarchical clustering
ggcorrplot(corr, hc.order = TRUE, outline.col = "white")

ggcorrplot R package: Visualization of a correlation matrix using ggplot2

# Types of correlogram layout
# --------------------------------
# Get the lower triangle
ggcorrplot(corr, hc.order = TRUE, type = "lower",
     outline.col = "white")

ggcorrplot R package: Visualization of a correlation matrix using ggplot2

# Get the upeper triangle
ggcorrplot(corr, hc.order = TRUE, type = "upper",
     outline.col = "white")

ggcorrplot R package: Visualization of a correlation matrix using ggplot2

# Change colors and theme
# --------------------------------
# Argument colors
ggcorrplot(corr, hc.order = TRUE, type = "lower",
   outline.col = "white",
   ggtheme = ggplot2::theme_gray,
   colors = c("#6D9EC1", "white", "#E46726"))

ggcorrplot R package: Visualization of a correlation matrix using ggplot2

# Add correlation coefficients
# --------------------------------
# argument lab = TRUE
ggcorrplot(corr, hc.order = TRUE, type = "lower",
   lab = TRUE)

ggcorrplot R package: Visualization of a correlation matrix using ggplot2

# Add correlation significance level
# --------------------------------
# Argument p.mat
# Barring the no significant coefficient
ggcorrplot(corr, hc.order = TRUE,
    type = "lower", p.mat = p.mat)

ggcorrplot R package: Visualization of a correlation matrix using ggplot2

# Leave blank on no significant coefficient
ggcorrplot(corr, p.mat = p.mat, hc.order = TRUE,
    type = "lower", insig = "blank")

ggcorrplot R package: Visualization of a correlation matrix using ggplot2


Viewing all articles
Browse latest Browse all 183

Trending Articles